\\"/ REXYGEN WWW.Trexygen.com

OPC UA driver for the REXYGEN system
(the OpcUaDrv module)

User guide

REX Controls s.r.o.

Version 3.0.5
Plzenr (Pilsen), Czech Republic
2025-07-04

www.rexygen.com

Contents

1 The OpcUaDrv driver and the REXYGEN system 2
1.1 Introductiono 2
1.2 Installation of the driver on the target device 2

1.2.1 Windows machines o 2
1.2.2 Linux machines Lo 3
1.3 Alternatives L 3

2 Including the driver in the project 4
2.1 Adding the OpcUaDrv driver 4
2.2 Configuration dialog of the OpcUaDrv driver 5
23 OPCUACHento e e 5
24 OPCUA Server. e 6

3 Connecting the inputs and outputs and using function blocks in the
control algorithm 9
3.1 Direct input and output signals L. 9
3.2 Function blockso 9

321 OPCUAClent e 9
3.22 OPCUA Server 10

4 Examples 11

5 Troubleshooting 12
Bibliography 13

Chapter 1

The OpcUaDrv driver and the
REXYGEN system

Licence: IIoT

1.1 Introduction

This manual describes the OpcUaDrv driver for handling of communication over the OPC
UA protocol within the REXYGEN system. The driver was developed by the REX Controls
company.

OPC UA is an open communication protocol for industrial automation. Unlike legacy
OPC, OPC UA is a multi-platform protocol, it may work as a web service and it offers
many advanced functions like diagnostics, method calls and various levels of security and
authentication in addition to standard events and data access. OPC UA is becoming a
preferred communication interface of many devices from various companies.

OPC UA is not a suitable protocol for hard real-time communication between control
devices, but is sufficient for soft real-time applications in many cases. A main utilization
areas of OPC UA are human-machine interfaces and interconnection of various devices
in a heterogeneous environment. See the OPC UA specification [1]| for more details.

1.2 Installation of the driver on the target device

1.2.1 Windows machines

The target part of the driver, which is used for running REXYGEN 0OpcUaDrv on Windows
10/11 is included in the Development tools of the REXYGEN system.

https://www.rexygen.com/doc/ENGLISH/MANUALS/BRef/licensing.html

1.2.2 Linux machines

If there is no RexCore runtime module installed on your target device, install it first using
the Getting started guide of REXYGEN [2]. The installation includes all necessary drivers
including OpcUaDrv.

If you want to install OpcUaDrv separately, it can be done from the Linux terminal
using the command
sudo apt-get install rex-opcuadrvt

1.3 Alternatives

Apart from the OpcUaDrv there is also a standalone OPC UA server for REXYGEN ap-
plication. This application is connected to REXYGEN and exposes all the data signals
defined in the REXYGEN algorithm as OPC UA Nodes. See OPC UA server - User
guide [3] for more details.

In comparison to the OPC UA server for REXYGEN the OpcUaDrv lets user to in-
clude OPC UA blocks in the control algorithm to not only expose selected signals as a
server but to also communicate with other devices as a client both through the OPC UA
protocol.

Chapter 2

Including the driver in the project

The driver is included in the project as soon as the driver is added to the project main
file and the inputs and outputs are connected in the control algorithm(s).

2.1 Adding the OpcUaDrv driver

The project main file with the OpcUaDrv driver included is shown in Figure 2.1.

=
File Edit View Project Target Tools Settings Window Help

DEEHIS sk C| 2 xall B PG BBS =S Yy 0.

B == =]|™
Block
Modules| Block name: Block type:
r- 2 OPCUA clib \TODRY
Orvers| Bt T} ‘ [E=t
OPCUA Block type description:
Archives |REXYGEN inputjoutput driver
—_ Open block documentation .. L Toggle quick reference
Leveld [prev_nextp Parameters Options Style
opcums_task
Scalar parameters
Levit
Parameter Value Type Description
Level2] 1| module OpclaDry string Module name
vt 2 | classname OpclabrC string 1/0 driver class name
3 | cigname iodrv.rio string Configuration file name
EXEC
4|factor 10 long Execution factor
5 [stack 10240 long Stack size [bytes]
6 pri 3 long Driver thread logical priority
7 |timer [off bool Driver is a source of time
module: Module name
.} Configure oK Cancel
Project: E\OpvUaDn\exec.mdl Target: Mot connected CAP |[NUM |SCRL

Figure 2.1: An example of project main file with the OpcUaDrv driver included

To include the driver in the project a block of type I0DRV must connected to the Drivers

output of the main EXEC block. The name of this block (OPCUA, see Fig. 2.1) must be
used as a prefix of all blocks and input and output signals provided by this driver.
The most important parameters of I0DRV block are:

e module — name of the module linked to the driver, in this case OpcUaDrv
e classname — class of the driver, which defines the role of the target device:

OpcUaDrvC — for OPC UA Client
OpcUaDrvS — for OPC UA Server

e cfgname — name of the driver configuration file, e.g. opcua_ cfg.rio

e factor — multiple of the EXEC block’s tick parameter defining the execution
period of the driver

The above mentioned parameters of the IODRV function block are configured in REXY-
GEN Studioprogram. The configuration dialog is shown also in Fig. 2.1.

The Configure button opens the configuration dialog of the OpcUaDrv driver, which
is described in chapter 2.2.

2.2 Configuration dialog of the OpcUaDrv driver

The configuration dialog can be activated from REXYGEN Studio by pressing the Configure
button in the parameters dialog of the IODRV block (renamed to OPCUA, see chapter 2.1).

2.3 OPC UA Client

Single instance of the driver can process multiple client connections. The configuration
dialog for OPC UA Client driver is shown in Figure 2.2 and has a form of a table of
the client connections with buttons for adding, editing and deleting a connection. The
configuration dialog for the client connection is shown in Figure 2.3.

Client connection parameters:

Alias — mandatory, Alias must be specified in the name of the flags and blocks that
belong to the context of this connection.

URL - address of the server

Reconnection timeout — number of seconds to wait between connection attempts
Read/Write timeout — number of seconds to wait for Read/Write operations to finish
Authentication — section for authentication configuration

Security — section for security configuration

|

| Alias URL Q| |
1 OpcUaDrvServer opc.tep://localhost:4840 D
il
g
@
O Cancel

Figure 2.2: OPC UA Client driver — table of clients

Namespace definitions — section for definition of the namespaces as they are defined
on the server
— Indexes of the namespaces are used to compose the NodeId parameter of the
OPC UA blocks.
— During the initialization of the connection the namespaces defined in the table
get resolved and the indexes on the client side get translated to the real indexes
on the server side.

2.4 OPC UA Server

The configuration dialog for OPC UA Server driver is shown in Figure 2.4.
Server parameters:

Port — port of the server

Application URI - identifier of the application
— Application URI must be the same as the URI defined in the certificate used by
the server.
— If a custom certificate is configured Application URI must be set to match. Leave
empty otherwise.

Namespace — namespace to be used for all nodes

L4

Alias: |OchaDr\rSer\ter

|
URL:	opc.b:p:,‘ﬂ0calhost:484ﬂ
Reconnection timeout [s]:	5.UD =
Read/Write tmeout [s]:	5.UEI =
Authentication	
Authentication mode: | Username/Password w

Username: |rexygen |

Password: |uouu = |
Security settings
Security policy: | Basic2565hase w
|
Security mode: | Sign@Encrypt w

Namespace definitions

Indesx MNamespace URL @
10 http://opcfoundation.org/UAS

21 urn:REX: OpclaDre

oK Cancel

Figure 2.3: OPC UA Client driver — configuration of a client

Certificate path — path on the target device to a custom certificate to be used
Private key path — path on the target device to a custom private key to be used

Authentication mode - configuration of the authentication
— Anonymous — no authentication
— Username/Password — authentication by a username and password

Username — username
Password — password

Security policy — policy to be used as user token policy during authentication

: Port: 4840

ik

| Application URL: |

| Mamespace: |urn ‘REX:OpcUabry

Security

Certificate path: |

Private key path: |

Authentication

Authentication mode: | Username/Password ~
Username: |rexygen |
Password: |uuou = |
Security policy: | Basic2565ha256 w
CK Cancel
Figure 2.4: OPC UA Server driver configuration

Chapter 3

Connecting the inputs and outputs
and using function blocks in the
control algorithm

The inputs and outputs of the driver must be interconnected with the individual tasks
(.mdl files). The individual tasks (QTASK or TASK blocks) are connected to the QTask,
LevelO,..., Level3 outputs of the main EXEC block.

3.1 Direct input and output signals

The inputs and outputs of the OpcUaDrv driver can be accessed as shown in Fig. 3.1.
First block of the From type allowing the user to read connection status has the
Goto tag set to OPCUAC__OpcUaServer_ConnectionStatus. Another block of the From
type allowing the user to read status of the server has Goto tag set to OPCUAS__Status.
The blocks always have the name of the driver block as a prefix right at the beginning
of the tag followed by two _ characters (underscore). If the block belongs to the client
driver the name of the driver with underscores must be followed by the alias of the client
connection defined in the driver configuration dialog and another underscore.

3.2 Function blocks
3.2.1 OPC UA Client

The OPC UA Client driver is responsible only for maintaining the connection to the
server. To read a value of an OPC UA Node over the OPC UA protocol the OpcUaReadValue
block must be used. To write value an OPC UA Node the OpcUaWriteValue block must
be used. The function blocks of the OpcUaDrv driver can be used as shown in Fig. 3.1.
The blocks always have the name of the driver block prefix right at the beginning of the
tag followed by two _ characters (underscore) and that is followed by an Alias identifying

E
File Edit View Project Target Tools Settings Window Help
ESEH & shlkae| = sy B IBE|E&ES

= =]=]| @ (= ==

CPCUAC__OpcUaCrvServer_Con neﬁluw

g @ .

Modules|

Drivers forev nextp

OFCUAS OPCUAC

Archives|

CNB_readValue
QTasy - I
HRUN yd

Ri

OPCUAC__OpcaDvServer_OpcUsReadValue
Leveld [prev_next}
cpousstaw opmuas fa cna TRES Ao

Levell

oNs I

Level2)

Level2| P iy 5
OPCUAC__OpallaDrvSenvar_OpcUsWritevsiue TRND:
EXEC
opeuas task (= e
OPCUAS_ Status 7

OPCUAS_OpdJsServerValue

CNB_enable_node

Project: E:\OpvUaDrv_backup\execmdl Target: Not connedted CAP [NUM [SCRL

Figure 3.1: Example of input and output flags of the OpcUaDrv driver

the client connection. To learn more about the OpcUaReadValue and OpcUaWriteValue
blocks see [4].

3.2.2 OPC UA Server

The OPC UA Server driver is responsible for handling all the communication from the
clients. To create and expose an OPC UA Node the OpcUaServerValue block must be
used. The function blocks of the OpcUaDrv driver can be used as shown in Fig. 3.1.
The blocks always have the name of the driver block as a prefix right at the begin-
ning of the tag followed by two _ characters (underscore). To learn more about the
OpcUaServerValue block see [4].

10

Chapter 4

Examples

To get started quickly the following examples can be used as a reference and you can
modify them for your application.

e 0408-01 OPC UA Communication/OPC UA Data Exchange — The example demon-
strates communication between a Client and a Server which are both implemented
in REXYGEN.

11

Chapter 5

Troubleshooting

In the case that the diagnostic tools of the REXYGEN system (e.g. Watch mode in the
REXYGEN Studio) report unexpected or incorrect values of inputs or outputs, it is de-
sirable to test the functionality outside the REXYGEN system. There are many free
programs that can be used for monitoring of the OPC UA communication such as Ua-
Expert.

In the case that the given input or output works with other software tools and does not
work in the REXYGEN system, report the problem to us, please. E-mail is preferred, reach
us at support@rexygen.com. Please include the following information in your description
to help us process your request as soon as possible:

e Identification of the REXYGEN system you are using. Simply export it to a file
using the REXYGEN Studio (Target — Licensing... — Export).

e Short and accurate description of your problem.

e The configuration files of the REXYGEN system (.mdl and .rio files) reduced to
the simplest case which still demonstrates the problematic behavior.

12

https://www.unified-automation.com/products/development-tools/uaexpert.html
https://www.unified-automation.com/products/development-tools/uaexpert.html
mailto:support@rexygen.com

Bibliography

[1] OPC Foundation. OPC Unified Architecture Specification.
https://opcfoundation.org/developer-tools/specifications-unified-architecture,
2020.

[2] REX Controls s.r.o.. Getting started with REXYGEN, 2024. —.
[3] REX Controls s.r.o.. OPC UA server for REXYGEN — User guide, 2019. —.

[4] REX Controls s.r.o.. Function blocks of REXYGEN - reference manual, 2024. —.

Documentation reference number: 17331

13

https://www.rexygen.com/doc/ENGLISH/MANUALS/RexygenGettingStarted/RexygenGettingStarted_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/RexOpcUa/RexOpcUa_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/BRef/BRef_ENG.html

	1 The OpcUaDrv driver and the REXYGEN system
	1.1 Introduction
	1.2 Installation of the driver on the target device
	1.2.1 Windows machines
	1.2.2 Linux machines

	1.3 Alternatives

	2 Including the driver in the project
	2.1 Adding the OpcUaDrv driver
	2.2 Configuration dialog of the OpcUaDrv driver
	2.3 OPC UA Client
	2.4 OPC UA Server

	3 Connecting the inputs and outputs and using function blocks in the control algorithm
	3.1 Direct input and output signals
	3.2 Function blocks
	3.2.1 OPC UA Client
	3.2.2 OPC UA Server

	4 Examples
	5 Troubleshooting
	 Bibliography

