N\ REXYGEN

WWW.rexygen.com

REXYGEN system SimDrv driver

User guide

REX Controls s.r.o.

Version 3.0.4
Plzeni (Pilsen), Czech Republic
2025-03-27

www.rexygen.com

Contents

1 The SimDrv driver and the REXYGEN system

1.1 Introduction
1.2 System requirements

1.3 Installation of the driver on the development computer

1.4 Installation of the driver on a target device

1.4.1 Devices with Windows operating system

1.4.2 Devices with Linux operating system

2 Including the Driver in the Application Project

2.1 Adding the SimDrv Driver to the Project . .

2.2 Connecting the inputs and outputs to the control algorithm

3 Driver Configuration
3.1 Configuration Dialog Window
3.1.1 Displaying Configured Signals
3.1.2 Configuration of Inputs and Outputs

4 Implementation Details
5 Troubleshooting

Bibliography

10

11

12

Chapter 1

The SimDrv driver and the
REXYGEN system

1.1 Introduction

This manual describes the use of the SimDrv driver to facilitate algorithm debugging of
the REXYGEN system on a non-target platform (usually a personal computer). The driver
cannot simulate the entire technology but allows generating various periodic signals and
a signal based on another value. The concept of the simulation driver enables a very
quick creation of a simulation driver configuration (.rio file) for an existing scheme (.mdl
file) with references to any REXYGEN system driver. When it is necessary to replace
SimDrv with a real driver, the project remains almost unchanged, only in the main EXEC
block, SimDrv will be replaced by another driver with the same name. The SimDrv driver
was developed by the REX Controls company.

1.2 System requirements

The SimDrv driver can be operated on all platforms and systems where the full-fledged
REXYGEN control system can be operated.

It is assumed that the development (configuration) computer is the target device
itself. However, this is not necessary. For the driver to be usable, the following software
equipment must be installed on the development computer and the target device:

Development computer

Operating system one of the systems: Windows 10/11, GNU/Linux
Development tools REXYGEN version for the given operating system
Target device

REXYGEN control system core for the corresponding operating system

I/0O driver version for the corresponding operating system

In the case that the development computer is directly the target device, only one

copy of the REXYGEN control system is installed.

1.3 Installation of the driver on the development computer

The SimDrv driver is installed as part of the REXYGEN system installation. It is included
in the installer of the development tools for the REXYGEN system and it is necessary
to select it during the installation process. During a typical installation, the REXY-
GEN control system is installed in the target directory C:\ProgramFiles\REXControls\
REXYGEN<version>.

After a successful installation, the following files are copied to the target directory:

Bin\SimDrv_H.d1ll — Configuration part of the SimDrv driver.

Bin\SimDrv_T.d1ll — Target part of the SimDrv driver run by the RexCore executive.
This version is used if the target device runs the Windows 10/11 operating system.
For other target platforms, the corresponding version of the REXYGEN system
must be installed.

DOC\PDF\ENGLISH\SimDrv_ENG.pdf This user manual.

1.4 Installation of the driver on a target device

1.4.1 Devices with Windows operating system

The target part of the driver, used for REXYGEN on Windows 10/11, is included within
the REXYGEN development tools.

1.4.2 Devices with Linux operating system

If you do not already have the RexCore runtime module of the REXYGEN control system
installed, install it first according to the "Getting started with REXYGEN" guide [1]. The
installation includes all necessary drivers, including SimDrv.

If you want to install SimDrv separately, you can do so from the command prompt
using the command:

sudo apt-get install rex-simdrvt

Chapter 2

Including the Driver in the
Application Project

Including the driver in the application project involves adding the driver to the main
project file and connecting the driver’s inputs and outputs in the control algorithms.

2.1 Adding the SimDrv Driver to the Project

The addition of the SimDrv driver to the main project file is illustrated in Fig. 2.1. The
philosophy of using SimDrv is such that the driver should replace another, specific driver.
To integrate the driver into the project, the I0ODRV block is used, which is connected to
the Drivers output of the main EXEC block. The SimDrv driver is a special type of driver
as it serves to temporarily replace a real driver. The standard convention for naming
drivers tells us that the driver should be named after its type. In this specific case, we
should thus name the driver SIM (see Figure 2.1). However, the name of the driver also
determines the names of all its input and output signals. If we were to name the SimDrv
driver SIM, we would have to modify the names of all its input and output signals when
exchanging the driver. Therefore, it is advisable to name the SimDrv driver to match the
name of the replaced driver, for example, MNR, RPi, WG, etc. The four most important
parameters of the IODRV block are:

e module — the name of the module in which the driver is implemented, in this case,
SimDrv

e classname — the driver class, in this case, SimDrv

e cfgname — the name of the driver configuration file. The creation of the config-
uration file is described in chapter 3. It is recommended to enter it in the form
<class_name>.rio, where the extension *.rio (REXYGEN Input/Output) has
been introduced for this purpose.

e factor — a multiple of the tick parameter of the EXEC block defining the period
for executing driver tasks.

dalth «

myproject_exec % myproject_task

-0y sy (1t

FAFIRARA
oMy r\f\l)‘/

Runtime Mode: Real-time Control

ZiZpim P

HIMI

Modules

Archives

QTask|

Levell

Level2|

Level3|

Crivers prev nextl

Bl

Levero|— e T

myproject_task

EXEC

Getting started with REXYGEN

See the README md file for
detsiled information

I Block properties

Blodk
Block name:

SIM

[exedibjiomRy

Type label: |RE‘«'\‘GEN inputfoutput driver

Block path: |myproJect_axec.51M

Open block documentation ...

Parameters Options Style Annotation

Scalar parameters

[T Toggle quick reference

Parameter ‘ Value |

Description

1| module £} | string Module name

2| classname SimDrv string 1/0 driver class name

3| cfgname simdrv.rio string Configuration file name

4| factor 1 long Execution factor

5 | stack 10240 long Stack size [bytes]

6| pri 3 long Driver thread logical priority

7|cpu -1 long CPU core assigned to driver thread ...
8 |timer [off bool Driver is a source of time

module: Module name

Ll {¥Configure

? X
Quick reference
REXYGEN input/
output driver
9 fprev_nextp fong
Sim
Inputs

prev

Outputs

next

Parameters
module
classname
cfgname
factor
stack
pri

pu

timer

Input for chaining 1/0 drivers

Output for chaining 1/0 drivers

Module name

I/ driver dass name
Configuration file name
Execution factor

Stack size [bytes]

Driver thread logical priority

CPU core assigned to driver thread
(-1=default, 0=core 0, 1=core 1, ...}

Driver is a source of time

Open blodk documentation ...

Figure 2.1: Example of adding the SimDrv driver to the project

ATTENTION! The parameter settings are case sensitive!

The parameters of the IODRV block just described are configured in the program
REXYGEN Studio in the dialog box, which is also shown in Figure 2.1.

The Configure button opens the configuration dialog for the SimDrv driver, which
is described in chapter 3.

2.2 Connecting the inputs and outputs to the control algo-
rithm

Inputs and outputs from drivers can be attached to the algorithm in individual tasks
using several functional blocks:

e For reading a single value, it is advantageous to use the From block.

e For writing a single value, the Goto block is used.

e As the driver allows obtaining several inputs or setting several outputs under one
symbolic name, it is advantageous to use blocks for quadruple, octuple, and sixteen-
fold inputs and outputs (INQUAD, OUTQUAD, INOCT, OUTOCT, and INHEXD, QUTHEXD).

The advantage of such use is to increase the speed and partly the clarity of algo-
rithms.

A detailed description of the blocks can be found in the manual [2].

In the main project file, the tasks are listed only by reference in blocks of type QTASK
or TASK connected to outputs QTask, LevelO, ... , Level3 of the executive. The input and
output blocks should be taken from the manual for the driver, which will then replace
SimDrv, for example, from manuals for the Monarco, Raspberry, Wago, etc., drivers.

The affiliation of the From and Goto blocks to a given driver is given by their pa-
rameter Goto tag, which starts with the name of this driver (see fig.2.1), continues with
the delimiter __ (two underscore characters in a row) and ends with the name of the
signal defined in the driver configuration (see chapter3). For the INQUAD, OUTQUAD, INOCT,
QUTOCT, and INHEXD, OUTHEXD blocks, this identification string is entered directly into
their name. For a specific example, consult the manual of the driver that will replace
SimDrv.

Chapter 3

Driver Configuration

In this chapter, the configuration of individual input and output signals and their sym-
bolic naming is described. Signals are mapped to individual values provided by the
simulation SimDrv.

3.1 Configuration Dialog Window

2 simDre [} =

Add items automatically: € []

Type of added items: € byte w
Input file: #
Output file: #
Name Type Maode Amp Offset Period Phi Ratio n
1 Al double sine 8 12 5 0 0
2_ Al2 double sawtooth 20 20 10 0 0,5
3_ A double null 0 0 0 0 0
T AC2 double null 0 0 0 0 0
5_ DI bool null 0 1 0 0 0
6_ D101 bool null 0 1] 0 0
?_ DI1.02 bool null 0 1 0 0 0
B_ DI1.03 bool null 0 0 0 0 0
Cancel

Figure 3.1: Configuration dialog for inputs and outputs

The configuration dialog window depicted in Fig. 3.1 is part of the SimDrv_H.d1l
file. It can be activated via the REXYGEN Studio program by clicking on the Configure
button in the IODRV block parameter dialog window (see Chapter 2) or by clicking on
the gear icon located on the right side of the I0ODRV block.

At the top of the dialog are several objects of global significance:

Add items automatically — If checked, when compiling with REXYGEN Compiler, all
references to I/O blocks from all connected tasks that are not yet in the con-
figuration will be automatically added. If unchecked, items will be used only for
compilation by REXYGEN Compiler to avoid compile errors, but will not be added
to the configuration file.

Type of added items — The type of items that will be automatically added. If Unknown
is selected, the item will not be added and an error will be reported during compi-
lation.

Input file — CSV file with values for inputs. Can be used instead of Mode at the
bottom of the configuration window.

Output file — CSV file where output values will be saved.

In the bottom part of the window, individual signals are defined which can then
be used to simulate reading or writing in the REXYGEN control system. Simply add
signals, or have them automatically generated at compilation by checking the Add Items
automatically option.

Signals can be added to the table by pressing the Add item button, edited with the
Edit item button, or by double-clicking on an item in the table. See Fig. 3.1.

3.1.1 Displaying Configured Signals

In the middle part of the dialog window, the configured signals are displayed in a tabular
format. Each row corresponds to a signal with an assigned symbolic name. The columns
of the table have the same meaning as the input fields during configuration and are
described in Section 3.1.2.

3.1.2 Configuration of Inputs and Outputs

The other elements of the dialog (i.e., the input fields at the bottom) from Fig. 3.1 are
used for the configuration of input and output signals. These are the fields:

Name — The name of the signal in the REXYGEN system. It must be entered uniquely.

Type — The type of signal. The significance is evident. It is recommended to use the
following types:

Bool boolean signal,
Long integer (32 bits signed, i.e., -2147483648 ...2147483647)
Double floating-point number (64-bit range)

Mode — The mode for signal generation. For outputs (i.e., signals from the .mdl drawing
to the driver), it must be Null. For inputs, there are several generators, with the
generator’s value multiplied by the Amplitude parameter and the 0ffset param-
eter’s value added to the result, i.e., y = Amplitude x x + O f fset. For periodic

generators, the start of generation is shifted by the value given by the Phase pa-
rameter. The following modes generate:

Null a constant value determined by the Offset parameter,

Noise a pseudo-random number in the range 0 < z(t) <1,

Rectangle a rectangular pattern — alternating values of 1 for
t €< Ratio x Period > and -1 for the remainder of the period,

Sawtooth a triangular pattern — value —1 < z(¢) < 1 with linear increase
for t € Ratio * Period and linear decrease for the rest of the period,

Sin function z(t) = sin(mw = t/ Period),

Filter 1st order filter from the signal, whose number is in the Period parameter,
i.e., x; = Ratio x x;_1 + (1 — Ratio) sig|Period],

Amplitude — The amplitude of the generated signal.

0ffset — The offset of the generated signal (added to the value).

Period — The period of the generator in seconds.

Phase — The relative shift of the generator’s start in time; it can take values 0 < z < 1.

Ratio — The proportion of the first part of the period for the types Sawtooth and
Rectangle; it can take values 0 <z < 1.

Chapter 4

Implementation Details

This chapter gathers insights that have arisen from previous experiences. Certain config-
uration items are often misunderstood, and a detailed description earlier would worsen
the readability of the text. Therefore, these insights are provided in a separate chapter.
The method of value transfer is also described in detail here.

The driver is typically used when the target platform is not available. In all blocks in
I0DRV in exec.mdl, we change the module and classname parameters to SimDrv and set a
different configuration file name (the cfgname parameter). Then we press the Configure
button (if the configuration file does not exist - we opt to create a new one) and set
Type of added items to long (other types can be used, but long implicitly converts
to bool and double, and other types are rare) and select Add items automatically
and save with the 0K button. Then we compile the project (in REXYGEN Studio go to
Project|Compile). Now we can run exec.rex, but all inputs will have a value of 0. It is
now possible to rerun the configuration of the simulation driver (button Configure) and
set more suitable generators or value types for the inputs depending on the technology’s
nature.

10

Chapter 5

Troubleshooting

In the event that the SimDrv driver functions correctly in simple test cases but does
not work with the necessary configuration, please send information about the issue by
email to support@rexcontrols.com. For the quickest resolution of the problem, the
information should include:

Identification details of your installation exported using the REXYGEN Studio pro-
gram (Target — Licensing — Export).

A brief and clear description of the problem.

The most simplified configuration of the REXYGENcontrol system in which the
problem occurs (in the file format with the extension .mdl).

The SimDrv driver configuration file.

11

mailto:support@rexygen.com

Bibliography

[1] REX Controls s.r.o.. Getting started with REXYGEN on Debian, 2020. —.

[2] REX Controls s.r.o.. Function blocks of REXYGEN — reference manual, 2024. —.

Documentation reference number: 17159

12

https://www.rexygen.com/doc/ENGLISH/MANUALS/RexygenGettingStarted_Linux/RexygenGettingStarted_Linux_ENG.html
https://www.rexygen.com/doc/ENGLISH/MANUALS/BRef/BRef_ENG.html

	1 The SimDrv driver and the REXYGEN system
	1.1 Introduction
	1.2 System requirements
	1.3 Installation of the driver on the development computer
	1.4 Installation of the driver on a target device
	1.4.1 Devices with Windows operating system
	1.4.2 Devices with Linux operating system

	2 Including the Driver in the Application Project
	2.1 Adding the SimDrv Driver to the Project
	2.2 Connecting the inputs and outputs to the control algorithm

	3 Driver Configuration
	3.1 Configuration Dialog Window
	3.1.1 Displaying Configured Signals
	3.1.2 Configuration of Inputs and Outputs

	4 Implementation Details
	5 Troubleshooting
	 Bibliography

